This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub tatyam-prime/ICPC_notebook
#define PROBLEM "https://judge.yosupo.jp/problem/number_of_substrings" #include "test/template.hpp" #include "src/string/SuffixArray.hpp" int main() { cin.tie(0)->sync_with_stdio(0); string S; cin >> S; const ll N = sz(S); auto [sa, lcp] = SA(S); cout << N * (N + 1) / 2 - accumulate(all(lcp), 0LL) << endl; }
#line 1 "test/string/LCP.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/number_of_substrings" #line 1 "test/template.hpp" #include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = LLONG_MAX / 4; #define rep(i, a, b) for(ll i = a; i < (b); i++) #define all(a) begin(a), end(a) #define sz(a) ssize(a) bool chmin(auto& a, auto b) { return a > b ? a = b, 1 : 0; } bool chmax(auto& a, auto b) { return a < b ? a = b, 1 : 0; } #line 1 "src/string/SuffixArray.hpp" // returns pair{sa, lcp} // sa 長さ n : s[sa[0]:] < s[sa[1]:] < … < s[sa[n-1]:] // lcp 長さ n-1 : lcp[i] = LCP(s[sa[i]:], s[sa[i+1]:]) auto SA(string s) { ll n = sz(s) + 1, lim = 256; // assert(lim > ranges::max(s)); vector<ll> sa(n), lcp(n), x(all(s) + 1), y(n), ws(max(n, lim)), rk(n); iota(all(sa), 0); for(ll j = 0, p = 0; p < n; j = max(1LL, j * 2), lim = p) { p = j; iota(all(y), n - j); rep(i, 0, n) if(sa[i] >= j) y[p++] = sa[i] - j; fill(all(ws), 0); rep(i, 0, n) ws[x[i]]++; rep(i, 1, lim) ws[i] += ws[i - 1]; for(ll i = n; i--;) sa[--ws[x[y[i]]]] = y[i]; swap(x, y); p = 1; x[sa[0]] = 0; rep(i, 1, n) { ll a = sa[i - 1], b = sa[i]; x[b] = (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++; } } rep(i, 1, n) rk[sa[i]] = i; for(ll i = 0, k = 0; i < n - 1; lcp[rk[i++]] = k) { if(k) k--; while(s[i + k] == s[sa[rk[i] - 1] + k]) k++; } sa.erase(begin(sa)); lcp.erase(begin(lcp)); return pair{sa, lcp}; } #line 4 "test/string/LCP.test.cpp" int main() { cin.tie(0)->sync_with_stdio(0); string S; cin >> S; const ll N = sz(S); auto [sa, lcp] = SA(S); cout << N * (N + 1) / 2 - accumulate(all(lcp), 0LL) << endl; }